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a b s t r a c t

The influence of spectrally varying mount properties (including stiffness and damping)

on the dynamics of powertrain motions is analytically examined. To overcome the

deficiency of the direct inversion method (limited to only the frequency domain

analysis), two methods are developed that describe the mount elements via a transfer

formulations are verified by comparing the frequency responses with numerical results

obtained by the direct inversion method (based on Voigt type mount model).

Eigensolutions and transient responses of a spectrally varying mounting system are

also predicted from new models. Based on complex eigenstructure, new coupling

indices, including modal kinetic energy fractions, are defined for each method. Complex

eigenvalue problem formulation with spectrally varying properties provides a closer

match with measured natural frequencies than the real eigensolution with frequency-

independent mounts. Given spectral variance in the mount properties, a simple roll

mode decoupling scheme is suggested for the powertrain isolation system. Finally, an

axiom for torque roll axis decoupling is provided by employing direct and adjoint

eigenvalue problems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Prior analyses of rigid body isolation systems, including vibration transmissibility, natural frequency placement, and
motion decoupling studies [1–7], assume that the stiffness (k) and viscous damping (c) properties are constant. However,
real-life mount elements inherently (and some even by design) exhibit considerable frequency- and amplitude-
dependency, express k=k(o, x) and c=c(o, x) where o is the angular frequency (rad/s) and x is the amplitude of excitation
[8–11]. The rigid body mounting systems are typically modeled in terms of a 6 degree of freedom (6-dof) inertial body that
is supported by tri-axial isolation elements at 3 or 4 locations along with a rigid foundation [1–7]. Yu et al. [12], He and
Singh [13], and Jeong and Singh [14] have suggested that it is necessary to incorporate the spectrally varying properties in
the engine isolation system models. In this article, we attempt to fill this void in the literature and in particular examine
the engine roll-mode decoupling scheme for such isolation systems. More specifically, we extend the work of Jeong and
Singh [2] and Park and Singh [3], and focus on the effect of spectrally varying mount properties on engine motion coupling
under torque excitation.

Jeong and Singh [14] had employed the Voigt type viscoelastic model given measured dynamic stiffness data (in
frequency domain) and then conducted modal analyses of 1

4 and 1
2 vehicle models. However, the introduction of highly
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frequency-dependent isolators requires a new analytical framework, especially for eigensolutions. The causality problem
associated with the inverse Fourier transformation for frequency-dependent loss factor or viscous damping [14,15] is well-
known, as physically unrealizable results that may emerge in time domain calculations. To overcome this difficulty, we
assume that the characteristics of a supporting element are first identified in the Laplace domain, say in terms of the cross
point dynamic stiffness using a non-resonant type experimental and/or analytical method [8,9]. Further, analogous
mechanical models (such as those developed for the hydraulic engine mounts) could be utilized for analytical calculations
(or dynamic design studies) under limited conditions [8,13]. Based on the above-mentioned mathematical description of
mounts, we propose a new 6-dof rigid body mounting system model with ki(o) and ci(o) i=1,y, n where n is the number
of tri-axial mount elements (with properties at a given excitation level). The governing system of this article is assumed to
be linear time-invariant, though some mounts (hydraulic or adaptive type) could exhibit significant amplitude sensitivity.
2. Problem formulation

2.1. Physical system and frequency domain calculations (Method I)

Fig. 1 illustrates a typical rigid body isolation system composed of an inertial body (engine and transmission), a rigid
base (chassis), and three or four mounts such that each isolation element could be arbitrarily placed at any exterior point
and oriented in any direction. The dynamic characteristics of isolators are generally represented in terms of the complex-
valued cross point dynamic stiffness, KðjoÞ ¼ kðoÞþ jcðoÞ, from non-resonant dynamic test [8] where j is the imaginary
unit. Fig. 2 shows sample measurements of k(o) and c(o) for two example cases (rubber and hydraulic engine mounts).
We could embed these or similar ki(o) and ci(o) properties in one or more mount elements of Fig. 1. The governing
equations of the mounting system in frequency domain (o) are as follows, where q(o) is the dynamic displacement vector,
and f(o) is the external excitation (force/torque) vector

½�o2Mþ joCðoÞþKðoÞ�qðoÞ ¼ fðoÞ: (1)

Here, M is the inertial (mass) matrix, and K(o) and C(o) are the stiffness and viscous damping matrices. For an internal
combustion powertrain system, the main excitation, f(t), comes from the pulsating torque that is generated by multi-
cylinder engines and it could be either periodic (under steady state) or transient (under start-up or switching conditions)
[16–18]. Frequency responses could be numerically calculated by the direct inversion method (designated in this article as
Method I), where we could simply use different k and c values at each frequency (essentially a look-up table scheme).
However, Method I in Eq. (1) cannot directly lead to the analytical modal expansion for response predictions and motion
coupling analyses. In order to overcome this limitation, Jeong and Singh [14] had formulated several spectral eigenvalue
problems and then suggested modal superposition procedures. However, their method is valid for a special class of
problems (where the dynamic stiffness is given in a specific form), and their approximation cannot be extended to a more
general spectrally varying vibrating system.
Powertrain 
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Fig. 1. Typical rigid body isolation system with mounts having spectrally varying stiffness and damping properties. Each mount is described by tri-axial

elements with k(o) and c(o) properties. Here, Ki(s) is the dynamic stiffness of the isolation element in a specific direction and CG is the center of gravity.
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2.2. Transfer function model of frequency-dependent mounts (Method II)

The cross-point dynamic stiffness (in Laplace domain s) of a typical engine mount at a certain excitation amplitude,
under a specific mean load, could be given by the following expression [8]:

KiðsÞ ¼
absbþ � � � þa3s3þa2s2þa1sþ1

basaþ � � � þb2s2þb1sþb0

: (2)

Here, a and b are the order of denominator and numerator, respectively, and the coefficients, ak and bk, are determined
by the experimental or numerical (analytical) method reflecting the internal fluid structure and rubber material properties.
Observe that Eq. (2) matches well with the experimental results of Fig. 2 for hydraulic (with a=2, b=3) and rubber (with
a=0, b=1) mounts. Employment of Eq. (2) to the powertrain mounts in Fig. 1 is designated here as Method II. This
formulation could be used in time domain as well. When the coefficients in Ki(s) are developed using measured data, they
should be carefully employed to avoid the causality problem [19,20]. The necessary and sufficient condition for Eq. (2) to
represent a causal system is that the real and imaginary parts of the Ki(s) should form a Hilbert transform pair [21].
2.3. Analogous mechanical model of frequency-dependent mounts (Method III)

A real-life isolation device could be sometimes approximated by an equivalent mechanical or visco-elastic model under
certain conditions [8,13,22]. For example, an analogous mechanical model of a highly frequency-dependent hydraulic
mount is proposed [8,13] assuming a fixed base at one end. With a linearized approximation around the operating point(s),
over the lower frequency range, the dynamic stiffness is approximated as

KiðsÞ ¼
a3s3þa2s2þa1sþ1

b2s2þb1sþb0

� krþcrsþkM�
k2

M

mMs2þcMsþkM
: (3)
Fig. 2. Mount examples with spectrally varying stiffness and viscous damping properties. Measured data for rubber and hydraulic mounts are compared,

respectively, with transfer function (TF) models given by Eq. (2). (a) Stiffness spectra, kðoÞ ¼ Re½KðjoÞ�; (b) viscous damping spectra, cðoÞ ¼ Im½KðjoÞ�=o.

Key: , measured data for a hydraulic mount with an excitation amplitude of x=1.5 mm; , measured data for a rubber mount; , second-order TF

for the hydraulic mount; , zeroth-order TF for the rubber mount (k=280 N mm�1, and c=300 N s m�1).
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Fig. 3 shows the results for the hydraulic mount corresponding to Eq. (3) along with the Voigt type visco-elastic model
for a rubber mount; refer to the figure for symbols and parameters. Such mechanical models are designated under Method
III; dynamic solutions from this procedure will be compared with Methods I and II (direct inversion and transfer function
formulations).

2.4. Objectives

The first objective is to extend the work of Jeong and Singh [2] and Park and Singh [3], and develop an analytical rigid body
mounting system model with k(o)and c(o) elements based on the transfer function formulation or equivalent mechanical
model as suggested by Eq. (2) or (3). Based on Methods II and III (analytically developed in Sections 3 and 4, respectively),
complex eigensolutions are calculated and applied to predict frequency and time responses using the modal superposition
method. The proposed methods are verified in frequency domain, under the harmonic torque excitation, by comparison with
the direct inversion method based on Eq. (1). The second objective is to study the influence of k(o) and c(o) on powertrain
motion coupling; this is accomplished by developing modal scalar functions based on complex eigensolutions. A simple (2-D)
engine roll-mode decoupling scheme is then suggested, and an axiom for 3-D TRA decoupling is provided; this will extend
the work of Park and Singh [3]. Finally, the three methods are quantitatively and qualitatively compared in terms of
eigensolutions and motion coupling issues. An overview of three methods is given in Table 1.

3. Analytical development of Method II

The following three coordinate systems are used in this article: inertial coordinates (XYZ)g, local mount coordinates
(XYZ)mi parallel with (XYZ)g, and principal mount direction coordinates (XYZ)mpi whose principal axes are not parallel with
k r

x(t)

base 

powertrain 

cr m M
x M (t)

x(t)

k M

cM

base 

powertrain 

crk r

ig. 3. Analogous mechanical models of rubber and hydraulic mounts. (a) Rubber mount (Voigt type model) and (b) hydraulic mount. Note that the fixed

ase is assumed for such models.

Table 1
Summary of three methods for the rigid body isolation system with k(o) and c(o) properties. Refer to the text for symbols.

Method I (direct inversion) Method II (transfer function) Method III (mechanical model)

Governing equations in o
domain

½�o2Mþ joCþK�qðoÞ ¼ fðoÞ
(dimension or dof=6)

Same Same

Governing equations in t

domain

Not formulated Me €qeðtÞþCe _qeðtÞþKeqeðtÞ ¼ feðtÞ

(dimension=6þNhdr)

MMe €qMeðtÞþCMe _qMeðtÞþKMeqMeðtÞ ¼ fMeðtÞ

(dimension=6þNhdr)

Nature of system matrices Symmetric Asymmetric Symmetric

Complex eigenvalue problem Not defined lrAUrþBUr ¼ 0

lrAVrþBVr ¼ 0

(
lMrAMUMrþBMUMr ¼ 0

Orthogonality of complex

modes

Not defined VT
r AUs ¼ drs

VT
r BUs ¼�lrdrs

(
UT

MrAMUMs ¼ drs

UT
MrBMUMs ¼�lMrdrs

(

Modal expansion (for complex

modes)

Not valid Valid Valid

Modal kinetic energy

fraction:xXi ;or
ð ¼ KEXi ;or

=KEor Þ

Not defined KEXi ;or
¼ ð1=2Þmio2

r

��½ur �Xi

��2
KEor ¼ ð1=2Þo2

r

��uT
r Meur

��
8<
: KEXi ;or

¼ ð1=2Þmio2
r

��½uMr �Xi

��2
KEor ¼ ð1=2Þo2

r

��uT
MrMMeuMr

��
8<
:
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(XYZ)g, i=1,y, n where n is the number of mounts. The (i)g coordinate system is a ground-fixed reference frame with its
origin at static equilibrium (at the center of gravity, CG). The displacement vector of the inertial body is expressed by the
translational and angular displacements of the center of gravity (CG), and is given by qðtÞ ¼ ½x y z yx yy yz�

TðtÞ. The
governing equations of motion are formulated in matrix form, as shown below for small amplitudes, where _qðtÞ and €qðtÞ
are the velocity and acceleration vectors, respectively of dimension N (=6)

M €qðtÞþC _qðtÞþKqðtÞ ¼ fðtÞþrfdðtÞ: (4)

Here, M is the inertial (mass) matrix, K is the stiffness matrix, C is the viscous damping matrix, f(t) is the external
excitation (force/torque) vector, and rfd(t) is the reaction force from the frequency-dependent components. The method for
incorporating the stiffness and damping matrices from the local mounts has been well-described by Park and Singh [3].
Express the reaction force, rfd(t), as the sum of forces from Nfd number of frequency-dependent components

rfdðtÞ ¼
XNfd

k ¼ 1

rfd;kðtÞ: (5)

The transfer function model for the k-th frequency-dependent mount is as follows, where L is the symbol of Laplace
transform, and rfd,k(t) and xfd,k(t) are output force and input displacement, respectively, in a specific direction of an isolation
element

Kfd;kðsÞ ¼
Rfd;kðsÞ

Xfd;kðsÞ
¼
L½rfd;kðtÞ�

L½xfd;kðtÞ�
; k¼ 1;2; . . . ;Nfd: (6)

The local reaction force for the k-th mount, rfd,k(t), is represented in the global (XYZ)g coordinates by using the
kinematics in terms of the orientation angles and locations of mounts while the input displacement, xfd,k(t), is also found
based on the geometry in the rigid body mounting system. Since the displacements at the mount location(s) caused by the
rigid body rotations are computed by using a cross vector product, the resulting deflection, qmi(t), at each mount is as
follows based on the rigid base assumption:

qmi;tðtÞ ¼ qtðtÞþqyðtÞ � rmi; (7)

in which rmi ¼ ½rxiryirzi�
T is the position vector of each mount and qtðtÞ ¼ ½XYZ�TðtÞ and qyðtÞ ¼ ½yXyYyZ�

TðtÞ are the
translational and rotational displacements of the rigid body. The cross vector in Eq. (7) can be expressed by a tensor skew
matrix, Lmi

qmi;tðtÞ ¼ I Lmi
� �

qðtÞ; (8)

Lmi ¼

0 rzi �ryi

0 rxi

skew sym: 0

2
64

3
75: (9)

The displacement, qmpi(t), of the i-th mount with respect to the principal mount direction coordinates, (XYZ)mpi, is
expressed as follows:

qmpiðtÞ ¼
qmpi;tðtÞ

qmpi;yðtÞ

" #
¼HT

g;mi

I Lmi

0 I

� �
qðtÞ: (10)

Here, qmpi;yðtÞ is the displacement vector at i-th mount contributed by the rotational motion of powertrain qy(t). The
rotational matrix, Hg,mi, for i-th mount is derived from the orientation angles of each mount and by rotating the local
(XYZ)mi coordinate system at each mount about the global (XYZ)g axes sequentially for X, Y, and Z. On the other hand, the
reaction force in the i-th mount in the global coordinate is obtained by a transformation from the local mount coordinates,
and the resulting reaction forces are

fg;miðtÞ ¼
fg;mi;tðtÞ

fg;mi;yðtÞ

" #
¼

fmi;tðtÞ

rmi � fmi;tðtÞ

" #
¼

I

LT
mi

" #
fmi;tðtÞ: (11)

Since fmi;tðtÞ ¼Hg;mifmpi;tðtÞ, Eq. (11) becomes

fg;miðtÞ ¼
I

LT
mi

" #
Hg;mifmpi;tðtÞ: (12)

Based on the fact that the output reaction force, rfd,k(t), is described in the (XYZ)mpi coordinates as

ffd;k�mpiðtÞ ¼ rfd;kðtÞ 0 0
h iT

, its transformation (rfd,k(t)) to the global coordinate system is expressed using Eq. (12) as

rfd;kðtÞ ¼ ffd;k�g;miðtÞ ¼
I

LT
mi

" #
Hg;mi

rfd;kðtÞ

0

0

2
64

3
75: (13)
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Since the input displacement, xfd,k(t), to a frequency-dependent element from rigid body motion (q(t)) is set as one of
the principal directions of i-th mount component, xfd,k(t) is obtained by finding a corresponding vector element in qmpi(t) of
Eq. (10) as follows:

xfd;kðtÞ ¼ qmpi;nðtÞ; n¼ x or y or z: (14)

The resulting input displacement in the direction of spectrally varying mount is now completely described in terms of
the orientation angle, its location, and rigid body motion without adding another variable for itself.

Next, the general form of mount transfer function, Eq. (2), can be readily used in the following procedure. To illustrate
our method, we consider the hydraulic mount example that shows considerable frequency-dependency [8]. This is
modeled in terms of only one pole and b zeros (sufficient at lower frequencies) as shown below

Kfd;kðsÞ ¼
ab;ksbþ � � � þa1;ksþ1

b2;ks2þb1;ksþb0;k

; (15)

where the numerator order b could be either 2, 3, or 4, depending on the desired accuracy [8]. We apply the inverse Laplace
transform to obtain the time domain formulation

hkðtÞ ¼ bfd;kðtÞ; k¼ 1; 2; . . . ; Nfd; (16)

in which

hkðtÞ ¼L�1½ðab;ksbþ � � � þa1;ksþ1ÞXfd;kðsÞ�; (17a)

bfd;kðtÞ ¼L�1
½ðb2;ks2þb1;ksþb0;kÞRfd;kðsÞ�; (17b)

By transforming the governing equations, Eq. (16), to the global coordinate system by using the kinematic relationships
given by Eqs. (13) and (14), we get

hkðtÞ ¼ bfd;kðtÞ; k¼ 1;2; . . . ; Nfd: (18)

Note that the reaction forces, rfd,k(t), introduce additional vector elements in q(t) in the following form due to
frequency-dependent components

qeðtÞ ¼ qTðtÞ fT
fdðtÞ

h iT
; (19a)

ffdðtÞ ¼ rfd;1ðtÞ . . . rfd;Nfd
ðtÞ

h iT
: (19b)

Thus, the dynamics of the spectrally varying mounting system is represented in an extended form. Here, note that if
each mount has one pole in the transfer function, we will have N+Nfd equations since one inertial element is brought in by
each mount. For an asymmetric mounting system, Eqs. (3) and (18) are expanded using the kinematics developed above as
follows:

m €xðtÞþcT
mx
_qðtÞþkT

mxqðtÞ ¼ fxþ frxðrfd;1; . . . ; rfd;Nfd
Þ; (20a)

m €yðtÞþcT
my
_qðtÞþkT

myqðtÞ ¼ fyþ fryðrfd; 1; . . . ; rfd;Nfd
Þ; (20b)

m€zðtÞþcT
mz
_qðtÞþkT

mzqðtÞ ¼ fzþ frzðrfd; 1; . . . ; rfd;Nfd
Þ; (20c)

Ixx
€yxðtÞþ Ixy

€yyðtÞþ Ixz
€yzðtÞþcT

myx
_qðtÞþkT

myx
qðtÞ ¼MxþMryx

ðrfd;1; . . . ; rfd;Nfd
Þ; (20d)

Ixy
€yxðtÞþ Iyy

€yyðtÞþ Iyz
€yzðtÞþcT

myy
_qðtÞþkT

myy
qðtÞ ¼MyþMryy

ðrfd; 1; . . . ; rfd;Nfd
Þ; (20e)

Ixz
€yxðtÞþ Iyz

€yyðtÞþ Izz
€yzðtÞþcT

myz
_qðtÞþkT

myz
qðtÞ ¼MzþMryz

ðrfd; 1; . . . ; rfd;Nfd
Þ; (20f)

hkðx
ðbÞ
fd;kðtÞ; . . . ; xfd;kðtÞÞ ¼ bkðr

ð2Þ
fd;1; . . . ; rfd;1; . . . ; rð2Þfd;Nfd

; . . . ; rfd;Nfd
Þ; k¼ 1; 2; . . . ; Nfd: (20g)

Combining Eqs. (20a–g) with zero initial conditions in the inverse Laplace transform in Eq. (20g), we assemble the
‘‘extended’’ governing equations (in matrix form) for the mounting system with frequency-dependent components as
follows:

Me €qeðtÞþCe _qeðtÞþKeqeðtÞ ¼ feðtÞ: (21)
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Here,

Me ¼
M 0

0 Mfd

" #
; Ce ¼

C Cfd;1

Cfd;2 Cfd;3

" #
; Ke ¼

K Kfd;1

Kfd;2 Kfd;3

" #
; (22a,b,c)

feðtÞ ¼ fT
ðtÞ rT

fdðtÞ
h iT

¼ fT
ðtÞ sfd;1ðtÞ . . . sfd;Nfd

ðtÞ
h iT

: (22d)

The extended matrices of Eq. (21), Me, Ce, and Ke, include sub-matrices and the original matrices, M, C, and K. The
dimension of the matrices with frequency-dependent mounts is now (N+Nfd)� (N+Nfd), while N�N is the dimension with
spectrally invariant properties. Observe that the extended matrices are no longer frequency-dependent, as they contain
constant values as shown above. Further, they are not symmetric matrices due to asymmetry in the expanded parts.
Therefore, it is now possible to define an appropriate eigenvalue problem for asymmetric matrices as discussed in the
Section 5.

4. Analytical development of Method III

Based on the parameters of Eq. (3), we can assemble the governing equations for the isolation system with mechanical
models of mounts. The reaction force from the k-th hydraulic mount of Fig. 3(b), rMfd,k(t), is formulated as

rMfd;kðtÞ ¼ kr;kxfd;kðtÞþcr;k _xfd;kðtÞþkM;k½xfd;kðtÞ�xM;kðtÞ�: (23)

Using Eq. (14), Eq. (23) is rewritten as

rMfd;kðtÞ ¼ kr;kqmpi;nðtÞþcr;kqmpi;nðtÞþkM;k½qmpi;nðtÞ�xM;kðtÞ�: (24)

We formulate its vector form, rMfd,k(t), by substituting Eq. (24) in Eq. (13), and the sum of reaction forces, rMfd(t), is
obtained for all frequency-dependent components. We obtain the following governing equations (essentially Eq. (4) with
additional independent variables xM,k(t)):

M €qðtÞþC _qðtÞþKqðtÞ ¼ fðtÞþrMfdðtÞ: (25)

For the inertial mass (mM,k) of k-th hydraulic mount, the governing equation is

mM;k €xM;kðtÞþcM;k _xM;kðtÞ�kM;k½qmpi;tp
ðtÞ�xM;kðtÞ� ¼ 0: (26)

Combining Eqs. (25) and (26), we formulate yet another set of extended equations (in a matrix form) for a rigid body
mounting system with frequency-dependent components as follows:

MMe €qMeðtÞþCe _qMeðtÞþKMeqMeðtÞ ¼ fMeðtÞ: (27)

Here,

MMe ¼
M 0

sym: MM

" #
; CMe ¼

C CM;1

sym: CM;2

" #
; KMe ¼

K KM;1

sym: KM;2

" #
; (28a,b,c)

qMeðtÞ ¼ qTðtÞ xT
MðtÞ

h iT
¼ qTðtÞ xM;1ðtÞ . . . xM;Nfd

ðtÞ
h i

: (28d)

fMeðtÞ ¼ fT
ðtÞ 0T

ðtÞ
h iT

¼ fT
ðtÞ 0 . . . 0

h iT
: (28e)

Note that Eq. (27) with the mechanical model is a simplified version of Eq. (21), which was obtained using the transfer
function model. In fact, this result is expected from a linearized approximation of a damped mechanical model based on
the transfer function formulation. If Eq. (27) is sufficiently accurate to describe the transfer function model, it would be
more convenient to use for modal and forced response analyses.

5. Verification of Methods II and III

5.1. Modal solutions and analytical frequency responses using Method II

The governing equations of Method I (with asymmetric Ke and Ce) are now represented in state-space form as

A _pðtÞþBpðtÞ ¼ gðtÞ; (29)

A¼
Me 0

0 �Ke

" #
; B¼

Ce Ke

Ke 0

" #
; pðtÞ ¼

_qeðtÞ

qeðtÞ

" #
; gðtÞ ¼

feðtÞ

0

� �
: (30a,b,c,d)
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Since the system matrices, A and B, are not self-adjoint, the direct (right) and adjoint (left) eigenvalue problems are
formulated from Eq. (29) as follows:

lAUþBU¼ 0 and lATVþBTV¼ 0: (31a,b)

Here, U and V are the direct (right) and adjoint (left) eigenvectors, respectively, and l is the eigenvalue [23]. They are
described by the following:

U¼
lu

u

� �
and V¼

lv

v

� �
: (32a,b)

Next, we employ the eigensolutions for the calculation of frequency response by using biorthogonal properties [23]:
VT

r AUs ¼ drs, VT
r BUs ¼�lrdrs, r, s=1, 2, 3 , y, 2(N+Nfd) where drs is the Kroneker delta function. Assuming harmonic

excitation as gðtÞ ¼Gejot , we analytically predict the frequency response as follows:

pðtÞ ¼UT
ðjoI�KÞVGejot ; (33)

in which,

U¼ u1 u2 . . . u2ðNþNfdÞ�1 u2ðNþNfdÞ

h i
; (34a)

V¼ v1 v2 . . . v2ðNþNfdÞ�1 v2ðNþNfdÞ

h i
; (34b)

K¼ diag
�

l1 l2 . . . l2ðNþNfdÞ�1 l2ðNþNfdÞ

h i�
: (34c)

5.2. Verification of Methods II and III

For the verification of Method II, the analytical frequency responses using complex eigensolution will be compared with
the ones obtained using Method I (direct inversion method with a look-up table for frequency-dependent stiffness and
CG 
x

 z 

φ

ka 

kb 

y

 z 

CG 

Fig. 4. Focalized powertrain mounting system (6-dof). Here, ka is the principal compressive stiffness and kb is the principal shear stiffness.
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damping) for a simple focalized rigid body mounting system as shown in Figs. 1 and 4. The parameters are as follows: mass
m=100.5 kg; moment of inertia (kg m2) IXX=1.65, IYY=2.43, IZZ=2.54; inertia product (kg m2) IXY= IXZ= IYZ=0. Stiffness and
damping coefficients of the rubber mounts (using the Voigt model) are: stiffness ka=280 N mm�1; stiffness rate ratio
Lk(=ka/kb)=2.5; damping ca=30 N s m�1; damping rate ratio Lc(=ca/cb)=2.5; mount orientation f=301; mount locations in
x-direction rx,1=rx,2=318 mm, rx,3=rx,4=�318 mm; mount locations in y-direction ry,1=ry,3=�198 mm, ry,2=ry,4=198 mm;
mount locations in z-direction rz,1=rz,2=rz,3=rz,4=�94 mm. A highly frequency-dependent hydraulic mount of Fig. 2 is now
placed at one location (say #1). The mount parameters are given in terms of its mechanical model: kr=512.95 N mm�1,
cr=198 N s m�1, mM=62.8 kg, cM=2666 N s m�1, and kM=436.95 N m�1. Fig. 5 compares frequency responses (given
harmonic torque) for the three methods; an exact match is seen. This result validates the proposed rigid body mounting
system model with frequency-dependent mounts described by either the transfer function or the analogous mechanical
model. Observe that the resonant frequencies differ from those obtained when we apply mount model with contact k and c

values. Next, we examine the modes of a V6 diesel engine isolation system [6]. In Table 2, measured natural frequencies
(from Ref. [6]) are compared with two sets of natural frequency calculations: (i) real eigensolutions with spectrally
invariant stiffness and viscous damping, and (ii) complex eigensolutions with spectrally varying stiffness and viscous
damping properties (as shown in Fig. 6) only at mount #1 location. We observe a closer agreement with the measured
values when the calculation includes frequency-dependent mount properties. This suggests that the spectrally varying
support elements must be included for accurate isolation performance studies. Detailed eigenvalue analysis is presented in
the next section.

In this focalized mounting system, the torque roll axis (TRA) decoupling is achieved with proportional damping,
and there is only a roll response given the torque excitation shown in Fig. 7. However, when the damping is increased
by a factor of 10 at location #1 (10ca), coupled motions are seen in Fig. 7. It is observed that more significant coupling
takes place with the use of a frequency-dependent mount at the same place (#1). In order to avoid the above motion
coupling by frequency-dependence, it is desirable to find the TRA decoupling scheme under spectrally varying
mounts.
Fig. 5. Frequency response functions predicted by Methods I, II, and III for the powertrain mounting system of Fig. 4 given harmonic torque. One of four

mounts is frequency-dependent (hydraulic mount of Fig. 2). (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key: , high damped

mount (ca,1=10ca); , Method I (direct inversion method using Voigt model); , Method II (modal method using transfer function model); and ,

Method III (modal method using analogous mechanical model).
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Fig. 6. Spectrally varying stiffness and viscous damping properties of mount #1 when applied to the V6 diesel engine system. (a) Stiffness spectra,

kðoÞ ¼ Re½KðjoÞ�; (b) viscous damping spectra, cðoÞ ¼ Im½KðjoÞ�=o. Key: , second-order transfer function (TF) modeled by analogous mechanical

model of Eq. (3) (with kr=224 N mm�1, cr=300 N s m�1, mM=6.5 kg, cM=36 N s m�1, and kM=17 N m�1) for the mount #1; , zeroth-order transfer

function (TF) reported in Ref. [6] for mount #1 (with k=224 N mm�1 and c=300 N s mm�1).

Table 2
Comparison of calculated and measured natural frequencies of a V6 diesel engine mounting system using both real and complex eigensolutions.

Mode Natural frequencies (Hz)

Measured Real eigensolution Complex eigensolution

Frequency-independenta Frequency-dependenta

1 4.17 4.47 4.47

2 5.66 5.97 5.89

3 6.47 7.48 7.35

4 8.76 9.87 9.89

5 12.47 12.27 12.44

6 – 16.45 16.45

A frequency-dependent mount is applied at location #1. Measurements are from Ref. [6].
a Properties are shown in Fig. 6.
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6. Nature of eigensolutions

Based on Methods II and III, eigensolutions for the mounting system of Section 5.2 is calculated with a slightly
frequency-dependent (rubber) and a highly frequency-dependent (hydraulic) mounts. As shown in Fig. 2, both are modeled
by using second-order transfer functions. In Table 3, eigenvalues are compared for frequency-independent rubber and
hydraulic mounts. Even though we observe a small change in the eigenvalues for the rubber mount (when compared with
the frequency-independent case), a large deviation for the hydraulic mount example is noted, especially near the notch
in mount dynamic stiffness spectrum. While the system with constant k and c values has 6 eigenvalues, 7 eigenvalues
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Fig. 7. Motion coupling introduced by a frequency-dependent mount in the powertrain mounting system of Fig. 4. Frequency response functions are

compared for 3 cases: frequency-invariant with proportional damping, frequency-invariant with non-proportional damping, and frequency-dependent

given harmonic torque. (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key: , proportional damping (frequency-invariant);

, non-proportional damping (frequency-invariant, ca,1=10ca); and , frequency-dependent mount (hydraulic mount in Fig. 2).
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(one with a high damping ratio (z)) are found for the frequency-dependent system. The seventh eigenvalue arises from the
hydraulic mount since it is modeled as a second-order system. An additional eigenvector is seen for both transfer function
and mechanical models even though the rfd,k element becomes the additional mode component for the transfer function
model while the xM,k component is for the mechanical model. Overall, the mechanical model (though approximate) yields a
good understanding of the physics.

7. Impulse responses in time domain

Since the proposed rigid body mounting system with spectrally varying mounts generates linear differential equations in
the form of Eq. (21) or Eq. (27), it is now possible to analytically calculate the time domain responses using the analytical
modal superposition or transition matrix method [23]. Even though either Method II or III can be used for transient analyses,
the transfer function model is preferred since it describes the real-life device more accurately than the approximate
mechanical model [8]. We calculate the time domain responses for the focalized spectrally varying rigid body mounting
system (of Section 5.2) by using Method II given an impulse torque excitation in the x-direction. Impulse responses for a
spectrally invariant system are compared as well, though we have replaced the frequency-dependent mount with a highly
damped (10ca) rubber mount. Transient responses in Fig. 8 clearly reveal significant coupling in powertrain motions due to
the frequency-dependence. Conversely, the impulse responses of Fig. 9 show minimal differences between frequency-
independent and rubber (with a minor variation in properties with frequency) mounts as expected.

8. Analysis of coupled motions

8.1. Introduction of coupling from isolators having varying stiffness values

The elastic axis or torque roll axis decoupling scheme is used to decouple the powertrain roll mode [1,2,3,17,24,25]
when specific frequency-independent stiffness values are assumed. The focalization method has been widely applied to
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Table 3
Complex eigensolutions of the powertrain mounting system of Fig. 4 using the Method II.

Dominant mode kak(o), cac(o) K(s)

Zeroth-order rubber mount Second-order rubber mount

or (Hz) z (%) or (Hz) z (%)

(a)

x 10.4 0.4 10.4 0.1

y 12.5 0.8 12.4 1.4

z 15.5 1.6 15.4 2.4

yx 22.2 1.7 22.1 1.9

yz 28.2 1.7 28.2 1.8

yy 32.3 3.2 32.1 2.9

Dominant mode(s) kak(o), cac(o) K(s)

Zeroth-order hydraulic mount Second-order hydraulic mount

or (Hz) z (%) or (Hz) z (%)

(b)

Mount mode – – 8.9 9.0a 7.5

x 6.0 0.2 6.0 6.1a 0.2

y 7.5 0.3 7.3 7.4a 0.1

z (yx) 10.0 0.7 11.5 11.2a 13.7

yx 23.4 1.1 23.5 23.6a 1.1

yz (yy) 29.1 1.2 29.2 29.2a 1.1

yy (yx, yz) 41.3 8.4 43.3 43.5a 4.6

One of four mounts employs properties of Fig. 2. Resonant frequencies approximated from the frequency response functions as predicted by Method I

(direct inversion) are also compared. (a) Rubber mount with m=100.5 kg; (b) hydraulic mount with m=300.5 kg. In each case, eigensolutions with

constant properties (kak(o), cac(o)) are also given.
a Resonant frequencies from the direct inversion (Method I).
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yield only the roll motion under harmonic torque excitation. In this method, constant principal compressive stiffness (ka)
and its ratio (Lk=ka/kb) to the principal shear stiffness (kb) values are selected to place the elastic center at the center of
gravity to avoid both static and dynamic couplings. However, the introduction of spectrally varying stiffness in the
principal compressive direction results in altering the stiffness ratio (Lk), and thus, it would induce varied coupling at
each frequency. To illustrate the significance of this problem, a simple 2-D mounting system of Fig. 10 is analyzed first.
The mounting system parameters for the roll mode decoupling are chosen as follows: mass m=70 kg; moment of inertia
(kg m2) IXX=20 kg m2; principal compressive stiffness ka=840 N mm�1; stiffness rate ratio Lk(=ka/kb)=5.8; mount
orientation f=22.51; mount location ry=rz=0.3 m. The principal compressive stiffness is changed from the nominal
value of ka to 4ka, 0.7ka, and 0.2ka, respectively, to describe a range of frequency-dependent values. The elastic center (CE)
is defined as the origin of the elastic axis coordinate system where no static coupling exists. For the focalized plane
mounting scheme, CE is calculated by the following:

rz�rz;e

ry
¼
ðLk�1Þtanf
Lk tan2 fþ1

: (35)

Fig. 11 shows the CE coordinates corresponding to a range of ka values. It is noted that as ka deviates from the targeted
value for roll mode decoupling, further CE moves away from the center of gravity (CG). The extent of coupling among the
motions is also displayed in Table 4 in terms of the modal kinetic energy fraction [26] at the roll natural frequency (this will
be discussed in detail in the Section 8.2). The energy fraction matches very well with the CE coupling measure of Fig. 11.
Corresponding frequency responses (given harmonic torque excitation) are shown in Fig. 12; refer to Fig. 10 for the
identification of symbols. The decoupled roll motion is now coupled since the stiffness ratio Lk changes due to a change in
ka. In addition, high damping coefficient over a certain frequency range (intentionally chosen to control certain powertrain
system resonance(s)) induces further coupling among the powertrain motions; this is partially due to an introduction of
non-proportional damping as reported by Park and Singh [3]. Results for a simple mounting system suggest that we need
to further investigate the effect of spectrally varying mounts on coupling between powertrain motions and in particular
torque roll axis decoupling schemes [2,3].

8.2. Modal kinetic energy distribution based on complex eigensolutions

Even though the modal kinetic energy is conventionally defined for real eigensolutions [26] as used in the previous
section, coupling between motions for a spectrally varying system should be quantified in terms of the complex modes;
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Fig. 8. Impulse responses for the powertrain mounting system of Fig. 4 given torque excitation. One of four mounts is replaced by a frequency-dependent

hydraulic (or by a highly damped) mount. (a) x(t); (b) y(t); (c) z(t); (d) yx(t); (e) yy(t); and (f) yz(t). Key: , frequency-dependent mount (hydraulic

mount in Fig. 2) and , highly damped mount (ca;1 ¼ 10ca).
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recall the eigensolutions for the spectrally varying mounting systems based on Method II or III. Define the modal kinetic
energy scalar function, xXi ;or

, in the Xi direction, at a natural frequency or, (for a spectrally varying symmetric powertrain
system based on Method II) as follows, where KEXi ;or

and KEor could be defined based on either right or adjoint
eigenvector:

xXi ;or
¼

KEXi ;or

KEor

; (36)

First, using the right eigenvector, define

KEXi ;or
¼

1

2
½M�iio2

r

���½ur �Xi

���2 and KEor ¼
1

2
o2

r

���uT
r Mur

���; (37a)

Second, using the left (adjoint) eigenvector, define

KEXi ;or
¼

1

2
½M�iio2

r

���½vr�Xi

���2 and KEor ¼
1

2
o2

r

���vT
r Mvr

���: (37b)

Here, ½ur �Xi
is the Xi-direction component of the r-th mode. Using Eqs. (37a, b), Table 5 compares the modal scalar

distributions for the powertrain system with one hydraulic and three rubber mounts (as discussed in the Section 5.2). The
modal energy distributions from Method III are also compared with those from Method II in Table 5. Observe that Method
II (with right eigenvectors) and Method III yield the same distributions. Therefore, Method III could be utilized to calculate
the modal kinetic energies for a spectrally varying dynamic system.

8.3. Roll mode decoupling with frequency-dependent mounts

Prior work [2] shows that the roll mode in a simple focalized mounting system (under torque excitation as shown in
Figs. 1 and 4) can be decoupled by satisfying the following condition:

rz

ry
¼
ðLk�1Þtanf
Lk tan2 fþ1

: (38)
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Fig. 9. Impulse responses for the powertrain mounting system of Fig. 4 given torque excitation. One of four mounts is replaced by a frequency-dependent

rubber (or a highly damped) mounts. (a) x(t); (b) y(t); (c) z(t); (d) yx(t); (e) yy(t); and (f) yz(t). Key: , frequency-dependent mount (rubber mount

in Fig. 2) and , highly damped mount (ca;1 ¼ 10ca).

φ ka 

kb 

y 

z 

CG 
CE 

φ e

rz,e 
rz 

ry 

x

Fig. 10. Focalized 3-dof powertrain mounting system. Here, CG is the center of gravity, CE is the elastic center, ka is the principal compressive stiffness,

and kb is the principal shear stiffness.
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Accordingly, the 6-dof powertrain isolation system is reduced to the following single dof model:

IXX
€yXðtÞþkyXyX

yXðtÞ ¼ TðtÞ; (39)

where, kyXyX
¼ 4kar2

y ð1=Lk sin2 fþcos2 fÞ. Thus the torque, T(t), excites only the roll motion as no coupling is observed in
Eq. (39). In order to analyze the effect of spectrally varying mounts on coupling, two frequency-dependent hydraulic
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Fig. 11. Coordinates of the elastic center (CE) of the 3-dof powertrain mounting system (Fig. 10), as the values of principal compressive stiffness (ka) of

both mounts are varied. Key: , 4ka; , ka (nominal value=840 N mm�1); , 0.7ka; and , 0.2ka.

Table 4

Modal kinetic energy fraction (x) and elastic center (CE) locations as decoupling indices for the 3-dof powertrain mounting system of Fig. 10.

ka;1ð ¼ ka;2Þ value x at the roll (yx) mode (%) |CE�CG| (m)

y z yx

4ka 31.9 0 68.1 0.25

ka 0 0 100.0 0

0.7ka 10.1 0 89.9 0.08

0.2ka 33.5 0 66.5 0.29

Here, CE is the elastic center, CG is the center of gravity, and ka=840 N mm�1 is the nominal value.
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mounts of Fig. 2 (with mechanical models as shown in Fig. 3(b)) are placed at locations #1 and #2; their internal rubber
parts have the same properties as the other two rubber mounts with constants k and c. By using the proposed frequency-
dependent mounting system model, the new governing equation in the roll direction (yX) is derived as follows:

IXX
€yXðtÞþkyX Y yðtÞþðkyXyX

þk0yXyX
ÞyXðtÞþkyXyZ

yZðtÞþkyX ;fdxM;1�kyX ;fdxM;2 ¼ TðtÞ; (40)

where,

kyX Y ¼�2kMry
cosf sinf

Lk sin2 fþcos2 f
; (41a)

k0yXyX
¼ 2kMry

cos2 f
ðLk sin2 fþcos2 fÞ2

; (41b)

kyXyZ
¼�2kMrxry

cosf sinf
Lk sin2 fþcos2 f

; (41c)

kyX ;fd ¼ kMry
cosf

Lk sin2 fþcos2 f
: (41d)

A comparison of Eq. (40) with Eq. (39) shows that T(t) excites not only the roll motion (yX) but also lateral (y) and yaw
(yZ) motions. In addition, the inertia track masses in both hydraulic mounts are also excited (in terms of xM,1 and xM,2) due
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Fig. 12. Frequency response functions of the 3-dof powertrain mounting system of Fig. 10 given harmonic torque. The values of principal compressive

stiffness, ka, of both mounts are varied. (a) Y(o); (b) Z(o); and (c) yX(o). Key: , 4ka; , ka (nominal value=840 N mm�1): TRA-decoupled

(focalized); , 0.7ka; and , 0.2ka.

Table 5

Modal kinetic energy fractions (xor
) of the powertrain mounting system of Fig. 4 using three methods.

or (Hz) xor
(%)

9.7 10.4 13.0 17.3 23.8 29.2 44.1

x 6*, 6**, 0*** 99, 99, 93 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 1

y 40, 40, 6 0, 0, 1 91, 91, 56 5, 5, 1 1, 1, 0 0, 0, 0 1, 1, 2

z 38, 38, 14 0, 0, 1 8, 8, 16 82, 82, 29 3, 3, 0 1, 1, 0 5, 5, 5

yx 8, 8, 16 0, 0, 1 1, 1, 6 10, 10, 25 80, 80, 48 2, 2, 0 8, 8, 3

yy 5, 5, 49 0, 0, 3 0, 0, 16 2, 2, 33 6, 6, 30 22, 22, 38 71, 71, 84

yz 3, 3, 16 0, 0, 1 0, 0, 5 2, 2, 13 9, 9, 21 76, 76, 61 14, 14, 5

Here, Method II uses both right or adjoint eigenvalue formulations, and Method III employs the mechanical model.

Key to the sequence: *, Method III; **, Method II with right eigenvalue problem; ***, Method II with adjoint eigenvalue problem.
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to the coupling term given by kyX ;fd. All of the coupling terms in Eqs. (41a–d) vanish when the inertia track induced
stiffness, kM, is set to zero.

Frequency responses are calculated next for a focalized mounting system with two frequency-dependent mounts
(described in the Section 5.2) under harmonic torque excitation with the following system parameters: Mass m=276.7 kg;
moment of inertia (kg m2) IXX=15.8, IYY=11.64, IZZ=15.69; and inertia product (kg m2) IXY= IXZ= IYZ=0. Stiffness and damping
coefficients of the rubber mounts are: stiffness ka=kr; stiffness rate ratio Lk(=ka/kb)=2.5; damping ca=cr; damping rate ratio
Lc(=ca/cb)=2.5; mount orientation, f=151; rx,1=rx,2=318 mm, rx,3=rx,4=�318 mm; ry,1=ry,2=�198 mm, ry,2=ry,4=198 mm;
rz,1=rz,2=rz,3=rz,4=�68 nm. Note that resultant frequency responses are coupled as shown in Fig. 13. The roll mode
decoupling is achieved by placing the elastic center projection line (obtained from the elastic centers of two symmetric
mounts, respectively, #1 and #2, and likewise #3 and #4) on the torque (roll) axis direction (x-direction). Based on
Eqs. (41a) and (41c), it is found that an orientation angle of 01 does indeed decouple the motions, even with spectrally
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Fig. 13. Comparison of decoupled frequency response functions with coupled functions for a powertrain mounting system of Fig. 4 given harmonic

torque. Two spectrally varying mounts of hydraulic mount in Fig. 2 are applied at locations #1 and #2. Mount parameters (orientation angle, f and

vertical location, rz) are chosen for TRA decoupling. (a) Y(o); (b) Z(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key: , coupled (f=151 and

rz=�68 mm); and , TRA-decoupled (f=01 and rZ=0 mm).

Fig. 14. Mount locations for coupled and decoupled powertrain of Fig. 4 given harmonic torque excitation. Two frequency-dependent mounts are placed

at locations #1 and #2 and the rest (locations #3 and #4) are frequency-independent mounts; motions are decoupled by adjusting locations and

orientation angle of mounts. Key: , TRA decoupled (f=01 and rz=0 mm); and , coupled (f=151 and rz=�68 mm).
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Table 6

Modal kinetic energy fractions (x) of the powertrain mounting system of Fig. 4 for coupled and decoupled cases.

Coupling scheme x (%) at the roll (yx) mode (9.3 Hz)

x y z yx yy yz

Coupled (f1=f2=151, rz,1=rz,2=�68 mm) 0 88.5 0 11.3 0 0.2

TRA-decoupled (f1=f2=01,rz,1=rz,2=�68 mm) 0 0 0 100 0 0

Spectrally varying hydraulic mounts of Fig. 2 are placed at locations #1 and #2, respectively. Mount parameters (orientation angle, f, and vertical

location, rz) are appropriately chosen to decouple or couple the TRA mode.
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varying mount properties; note that when f=01, rZ is found to be 0 for a focalized mounting scheme. Frequency responses
of this decoupled mounting scheme are shown in Fig. 13, and the corresponding mount locations are illustrated in Fig. 14.
Table 6 compares the modal kinetic energy distributions at the roll mode for both coupled and TRA-decoupled systems
with frequency-dependent mounts. Recall that the roll mode was severely coupled with lateral (y) direction with
frequency-dependent mounts; it is now decoupled, thereby resulting in 100% energy content in the roll direction (yX)
alone.

9. TRA decoupling of spectrally varying powertrain mounting system

Recall from Eq. (29) that the eigenvectors of direct and adjoint eigenvalue problems for a spectrally varying mounting
system are biorthogonal with respect to A and B. Based on this biorthogonal property, we analytically show that the torque
roll axis decoupling for a spectrally varying mounting system could still be achieved; proof is as follows. Apply the

harmonic torque excitation to Eqs. (21) and (22) as feðtÞ ¼ Teejot where Te ¼ ½T
T; ðMfdgÞT�T; also, define f(t)=Teiot,

r(t)=Mfdgeiot, and g¼ Z1;Z2; . . . ; ZNfd

h iT
where Zi are constants. Then the steady-state response will be in the form of

qeðtÞ ¼ qT; q1; q2; . . . ; qNfd

h iT
ðtÞejot ¼Q eejot , leading to

joAPþBP¼G; (42)

G¼
Te

0

� �
; P¼

joQ e

Q e

" #
: (43a,b)

Based on the orthogonal property of eigenvectors, the dynamic response of the 6-dof system is expressed by
P¼

P2N
r ¼ 1 brUr where, Ur is the eigenvector and br is the modal participation coefficient. The orthogonal property of the

complex eigenvectors provides the following relations:VT
r AUs ¼ drs, VT

r BUs ¼�lrdrs, r; s¼ 1; 2; . . . ; 2ðNþNfdÞ. Using the
above properties, Eq. (42) yields

br ¼
VT

r G

jo�lr
: (44)

In order to achieve the roll mode motion decoupling, it is assumed that one of the eigenvectors must be parallel to the
torque roll axis (TRA) direction. Define the torque roll axis direction, qe,TRA, and let one mode, us, be in the torque roll axis
direction as follows where g and r are scalar constants:

qe;TRA ¼
qTRA

g

" #
¼

gM�1T

g

" #
; (45)

Us ¼ rPe;TRA; where Us ¼
lus

us

" #
and Pe;TRA ¼

lqe;TRA

qe;TRA

" #
: (46)

Combining Eqs. (45) and (46) and using

VT
r AUs ¼ rVT

r

Me 0

0 �Ke

" #
lqe;TRA

qe;TRA

" #
;

we obtain

VT
r G¼

1

rg
1

l
VT

r AUsþVT
r

0

Kus

" # !
; r; s¼ 1; 2; 3; . . . ; 2ðNþNfdÞ: (47a)
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Expand the above to yield

VT
r G¼

1

rg
1

l
ðdrsþvT

r KusÞ: (47b)

Since us is set in the torque roll axis direction, Eqs. (47a, b) become

VT
r G¼

1

rg ð1þasÞdrs: (47c)

Here as ¼ vT
s Kus. From Eqs. (44) and (47c), only bsa0 and br=0. Eventually, the forced response, q(t), exists only in the

torque roll axis direction for a frequency-dependent dynamic system.
When we include a mechanical mount model in the isolation system, Eq. (27) is transformed into state space form as

follows:

AM _pMðtÞþBMpMðtÞ ¼ gMðtÞ; (48)

AM ¼
MMe 0

0 �KMe

" #
; BM ¼

CMe KMe

KMe 0

" #
; pMðtÞ ¼

_qMeðtÞ

qMeðtÞ

" #
; gMðtÞ ¼

fMeðtÞ

0

� �
: (49a,b,c,d)

The resultant complex eigenvectors are orthogonal with respect to AM and BM since the system matrices MMe, KMe, and
CMe are symmetric, unlike those for Method II. Accordingly, we can apply the procedure suggested by Park and Singh [3] for
a non-proportionally damped system. The forced motion, q(t), exists only in the torque roll axis direction as long as a mode
is in the torque roll axis direction.

10. Conclusion

In this article, three methods for representing mounts with k(o) and c(o) are critically examined in describing the
eigensolutions and frequency responses of an isolation system. Table 1 summarizes and compares Methods I, II, and III by
assuming that the hydraulic mounts of Fig. 2 (with a dimension of Nhyd) are embedded in a 6-dof isolation system.
To overcome the deficiencies of Method I (limited to only the frequency domain analysis), Methods II and III are developed
by employing transfer function (in Laplace domain) and mechanical system formulations, respectively. Both analytical
methods compare well with the direct inversion method in predicting the frequency responses. Impulse response is also
analytically calculated based on the proposed methods.

The powertrain motion coupling issues are investigated under harmonic or impulse torque excitation. New coupling
indices, including modal kinetic energy fractions, are defined for Methods II and III, and they are found to be useful in the
analysis of spectrally varying mounting systems. Even though the roll mode decoupled mounting scheme (by using the
focalization method under harmonic torque excitation) can be represented by a reduced single dof model, additional dof is
introduced by the hydraulic mount and consequently the roll mode is coupled again with lateral and yaw motions.
Nonetheless, the roll mode could still be decoupled (in the focalized mounting scheme) by placing the mounts with k(o)
and c(o) in the vertical direction and located at the same height as the center of gravity of powertrain. By employing direct
and adjoint eigenvalue problems in Method II, it has been shown that the TRA decoupling with frequency-dependent
elements is possible provided a mode is always set in the TRA direction. However, detailed numerical examples and design
studies are left for future work. Note that two eigenvalue problems in terms of stiffness and viscous damping matrices
need to be solved for systems with k(o) and c(o). An investigation of the effect of amplitude-sensitive mount on motion
coupling should be pursued in future work along with an examination of the role of flexible base (say with few modes)
over the lower frequency range.
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